Model averaging for robust extrapolation in evidence synthesis

05/28/2018
by   Christian Röver, et al.
0

Extrapolation from a source to a target, e.g., from adults to children, is a promising approach to utilizing external information when data are sparse. In the context of meta-analysis, one is commonly faced with a small number of studies, while potentially relevant additional information may also be available. Here we describe a simple extrapolation strategy using heavy-tailed mixture priors for effect estimation in meta-analysis, which effectively results in a model-averaging technique. The described method is robust in the sense that a potential prior-data conflict, i.e., a discrepancy between source and target data, is explicitly anticipated. The aim of this paper to develop a solution for this particular application, to showcase the ease of implementation by providing R code, and to demonstrate the robustness of the general approach in simulations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro