Mobiprox: Supporting Dynamic Approximate Computing on Mobiles

03/16/2023
by   Matevž Fabjančič, et al.
0

Runtime-tunable context-dependent network compression would make mobile deep learning adaptable to often varying resource availability, input "difficulty", or user needs. The existing compression techniques significantly reduce the memory, processing, and energy tax of deep learning, yet, the resulting models tend to be permanently impaired, sacrificing the inference power for reduced resource usage. The existing tunable compression approaches, on the other hand, require expensive re-training, seldom provide mobile-ready implementations, and do not support arbitrary strategies for adapting the compression. In this paper we present Mobiprox, a framework enabling flexible-accuracy on-device deep learning. Mobiprox implements tunable approximations of tensor operations and enables runtime adaptation of individual network layers. A profiler and a tuner included with Mobiprox identify the most promising neural network approximation configurations leading to the desired inference quality with the minimal use of resources. Furthermore, we develop control strategies that depending on contextual factors, such as the input data difficulty, dynamically adjust the approximation level of a model. We implement Mobiprox in Android OS and through experiments in diverse mobile domains, including human activity recognition and spoken keyword detection, demonstrate that it can save up to 15

READ FULL TEXT

page 1

page 2

page 3

page 4

research
10/23/2018

NestDNN: Resource-Aware Multi-Tenant On-Device Deep Learning for Continuous Mobile Vision

Mobile vision systems such as smartphones, drones, and augmented-reality...
research
01/28/2021

AdaSpring: Context-adaptive and Runtime-evolutionary Deep Model Compression for Mobile Applications

There are many deep learning (e.g., DNN) powered mobile and wearable app...
research
07/14/2017

Towards Efficient Deep Inference for Mobile Applications

Mobile applications are benefiting significantly from the advancement in...
research
07/14/2017

Cloud-based or On-device: An Empirical Study of Mobile Deep Inference

Modern mobile applications are benefiting significantly from the advance...
research
08/25/2023

A Study on Hyperparameters Configurations for an Efficient Human Activity Recognition System

Human Activity Recognition (HAR) has been a popular research field due t...
research
05/31/2019

ActiveHARNet: Towards On-Device Deep Bayesian Active Learning for Human Activity Recognition

Various health-care applications such as assisted living, fall detection...

Please sign up or login with your details

Forgot password? Click here to reset