Mobile Traffic Offloading with Forecasting using Deep Reinforcement Learning

11/18/2019
by   Chih-Wei Huang, et al.
0

With the explosive growth in demand for mobile traffic, one of the promising solutions is to offload cellular traffic to small base stations for better system efficiency. Due to increasing system complexity, network operators are facing severe challenges and looking for machine learning-based solutions. In this work, we propose an energy-aware mobile traffic offloading scheme in the heterogeneous network jointly apply deep Q network (DQN) decision making and advanced traffic demand forecasting. The base station control model is trained and verified on an open dataset from a major telecom operator. The performance evaluation shows that DQN-based methods outperform others at all levels of mobile traffic demand. Also, the advantage of accurate traffic prediction is more significant under higher traffic demand.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro