MOBA: A multi-objective bounded-abstention model for two-class cost-sensitive problems

05/17/2019
by   Hongjiao Guan, et al.
0

Abstaining classifiers have been widely used in cost-sensitive applications to avoid ambiguous classification and reduce the cost of misclassification. Previous abstaining classification models rely on cost information, such as a cost matrix or cost ratio. However, it is difficult to obtain or estimate costs in practical applications. Furthermore, these abstention models are typically restricted to a single optimization metric, which may not be the expected indicator when evaluating classification performance. To overcome such problems, a multi-objective bounded-abstention (MOBA) model is proposed to optimize essential metrics. Specifically, the MOBA model minimizes the error rate of each class under class-dependent abstention constraints. The MOBA model is then solved using the non-dominated sorting genetic algorithm II, which is a popular evolutionary multi-objective optimization algorithm. A set of Pareto-optimal solutions will be generated and the best one can be selected according to provided conditions (whether costs are known) or performance demands (e.g., obtaining a high accuracy, F-measure, and etc). Hence, the MOBA model is robust towards variations in the conditions and requirements. Compared to state-of-the-art abstention models, MOBA achieves lower expected costs when cost information is considered, and better performance-abstention trade-offs when it is not.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro