ML Based Lineage in Databases
We track the lineage of tuples throughout their database lifetime. That is, we consider a scenario in which tuples (records) that are produced by a query may affect other tuple insertions into the DB, as part of a normal workflow. As time goes on, exact provenance explanations for such tuples become deeply nested, increasingly consuming space, and resulting in decreased clarity and readability. We present a novel approach for approximating lineage tracking, using a Machine Learning (ML) and Natural Language Processing (NLP) technique; namely, word embedding. The basic idea is summarizing (and approximating) the lineage of each tuple via a small set of constant-size vectors (the number of vectors per-tuple is a hyperparameter). Therefore, our solution does not suffer from space complexity blow-up over time, and it "naturally ranks" explanations to the existence of a tuple. We devise an alternative and improved lineage tracking mechanism, that of keeping track of and querying lineage at the column level; thereby, we manage to better distinguish between the provenance features and the textual characteristics of a tuple. We integrate our lineage computations into the PostgreSQL system via an extension (ProvSQL) and extensive experiments exhibit useful results in terms of accuracy against exact, semiring-based, justifications, especially for the column-based (CV) method which exhibits high precision and high per-level recall. In the experiments, we focus on tuples with multiple generations of tuples in their lifelong lineage and analyze them in terms of direct and distant lineage.
READ FULL TEXT