Mixture of Input-Output Hidden Markov Models for Heterogeneous Disease Progression Modeling

07/24/2022
by   Taha Ceritli, et al.
0

A particular challenge for disease progression modeling is the heterogeneity of a disease and its manifestations in the patients. Existing approaches often assume the presence of a single disease progression characteristics which is unlikely for neurodegenerative disorders such as Parkinson's disease. In this paper, we propose a hierarchical time-series model that can discover multiple disease progression dynamics. The proposed model is an extension of an input-output hidden Markov model that takes into account the clinical assessments of patients' health status and prescribed medications. We illustrate the benefits of our model using a synthetically generated dataset and a real-world longitudinal dataset for Parkinson's disease.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset