Mixer: DNN Watermarking using Image Mixup

12/06/2022
by   Kassem Kallas, et al.
0

It is crucial to protect the intellectual property rights of DNN models prior to their deployment. The DNN should perform two main tasks: its primary task and watermarking task. This paper proposes a lightweight, reliable, and secure DNN watermarking that attempts to establish strong ties between these two tasks. The samples triggering the watermarking task are generated using image Mixup either from training or testing samples. This means that there is an infinity of triggers not limited to the samples used to embed the watermark in the model at training. The extensive experiments on image classification models for different datasets as well as exposing them to a variety of attacks, show that the proposed watermarking provides protection with an adequate level of security and robustness.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset