Mixed-Effect Time-Varying Network Model and Application in Brain Connectivity Analysis

06/11/2018
by   Jingfei Zhang, et al.
0

Time-varying networks are fast emerging in a wide range of scientific and business disciplines. Most existing dynamic network models are limited to a single-subject and discrete-time setting. In this article, we propose a mixed-effect multi-subject continuous-time stochastic blockmodel that characterizes the time-varying behavior of the network at the population level, meanwhile taking into account individual subject variability. We develop a multi-step optimization procedure for a constrained stochastic blockmodel estimation, and derive the asymptotic property of the estimator. We demonstrate the effectiveness of our method through both simulations and an application to a study of brain development in youth.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro