Mixed batches and symmetric discriminators for GAN training

06/19/2018 ∙ by Thomas Lucas, et al. ∙ 0

Generative adversarial networks (GANs) are pow- erful generative models based on providing feed- back to a generative network via a discriminator network. However, the discriminator usually as- sesses individual samples. This prevents the dis- criminator from accessing global distributional statistics of generated samples, and often leads to mode dropping: the generator models only part of the target distribution. We propose to feed the discriminator with mixed batches of true and fake samples, and train it to predict the ratio of true samples in the batch. The latter score does not depend on the order of samples in a batch. Rather than learning this invariance, we introduce a generic permutation-invariant discriminator ar- chitecture. This architecture is provably a uni- versal approximator of all symmetric functions. Experimentally, our approach reduces mode col- lapse in GANs on two synthetic datasets, and obtains good results on the CIFAR10 and CelebA datasets, both qualitatively and quantitatively.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 6

page 7

page 18

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.