MIP*=RE

01/13/2020 ∙ by Zhengfeng Ji, et al. ∙ 0

We show that the class MIP* of languages that can be decided by a classical verifier interacting with multiple all-powerful quantum provers sharing entanglement is equal to the class RE of recursively enumerable languages. Our proof builds upon the quantum low-degree test of (Natarajan and Vidick, FOCS 2018) by integrating recent developments from (Natarajan and Wright, FOCS 2019) and combining them with the recursive compression framework of (Fitzsimons et al., STOC 2019). An immediate byproduct of our result is that there is an efficient reduction from the Halting Problem to the problem of deciding whether a two-player nonlocal game has entangled value 1 or at most 1/2. Using a known connection, undecidability of the entangled value implies a negative answer to Tsirelson's problem: we show, by providing an explicit example, that the closure C_qa of the set of quantum tensor product correlations is strictly included in the set C_qc of quantum commuting correlations. Following work of (Fritz, Rev. Math. Phys. 2012) and (Junge et al., J. Math. Phys. 2011) our results provide a refutation of Connes' embedding conjecture from the theory of von Neumann algebras.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.