Minimum Spanning Trees in Weakly Dynamic Graphs

by   Moustafa Nakechbandi, et al.

In this paper, we study weakly dynamic undirected graphs, that can be used to represent some logistic networks. The goal is to deliver all the delivery points in the network. The network exists in a mostly stable environment, except for a few edges known to be non-stable. The weight of each of these non-stable edges may change at any time (bascule or lift bridge, elevator, traffic congestion...). All other edges have stable weights that never change. This problem can be now considered as a Minimum Spanning Tree (MST) problem on a dynamic graph. We propose an efficient polynomial algorithm that computes in advance alternative MSTs for all possible configurations. No additional computation is then needed after any change in the problem because the MSTs are already known in all cases. We use these results to compute critical values for the non-stable weights and to pre-compute best paths. When the non-stable weights change, the appropriate MST may then directly and immediately be used without any recomputation.



There are no comments yet.


page 1


Stable gonality is computable

Stable gonality is a multigraph parameter that measures the complexity o...

A Stronger Lower Bound on Parametric Minimum Spanning Trees

We prove that, for an undirected graph with n vertices and m edges, each...

On the Complexity of Weight-Dynamic Network Algorithms

While operating communication networks adaptively may improve utilizatio...

On the minimum spanning tree problem in imprecise set-up

In this article, we study the Euclidean minimum spanning tree problem in...

Spanning Tree Congestion and Computation of Generalized Győri-Lovász Partition

We study a natural problem in graph sparsification, the Spanning Tree Co...

Streaming Complexity of Spanning Tree Computation

The semi-streaming model is a variant of the streaming model frequently ...

Noise-Stable Rigid Graphs for Euclidean Embedding

We proposed a new criterion noise-stability, which revised the classical...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.