Minimizing Age of Information via Scheduling over Heterogeneous Channels
In this paper, we investigate how to minimize the age of information when a source can transmit status updates over two heterogeneous channels. The work is motivated by recent developments of 5G mmWave technology, where transmissions may occur over an unreliable but fast (e.g., mmWave) channel or a slow reliable (e.g., sub-6GHz) channel. The unreliable channel is modeled using the Gilbert-Elliot channel model, where information can be transmitted at a high rate when the channel is in the 'ON' state. The reliable channel is assumed to provide a deterministic but lower data rate. The scheduling strategy is to select which channel to transmit on over time in order to minimize the time-average age of information. The problem can be formulated as a Markov Decision Process (MDP). The MDP structures based on two largely different channels with time correlation is complicated, which makes our problem challenging. However, we still efficiently derive an exact solution. We first show that there exists an optimal threshold-type scheduling policy to minimize age. We then develop a low-complexity algorithm to derive the exact value of the optimal thresholds. Numerical simulations are provided to compare different policies.
READ FULL TEXT