Minimax rates for cost-sensitive learning on manifolds with approximate nearest neighbours

03/01/2018
by   Henry WJ Reeve, et al.
0

We study the approximate nearest neighbour method for cost-sensitive classification on low-dimensional manifolds embedded within a high-dimensional feature space. We determine the minimax learning rates for distributions on a smooth manifold, in a cost-sensitive setting. This generalises a classic result of Audibert and Tsybakov. Building upon recent work of Chaudhuri and Dasgupta we prove that these minimax rates are attained by the approximate nearest neighbour algorithm, where neighbours are computed in a randomly projected low-dimensional space. In addition, we give a bound on the number of dimensions required for the projection which depends solely upon the reach and dimension of the manifold, combined with the regularity of the marginal.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset