Minimax Estimation of Linear Functions of Eigenvectors in the Face of Small Eigen-Gaps

04/07/2021 ∙ by Gen Li, et al. ∙ 8

Eigenvector perturbation analysis plays a vital role in various statistical data science applications. A large body of prior works, however, focused on establishing ℓ_2 eigenvector perturbation bounds, which are often highly inadequate in addressing tasks that rely on fine-grained behavior of an eigenvector. This paper makes progress on this by studying the perturbation of linear functions of an unknown eigenvector. Focusing on two fundamental problems – matrix denoising and principal component analysis – in the presence of Gaussian noise, we develop a suite of statistical theory that characterizes the perturbation of arbitrary linear functions of an unknown eigenvector. In order to mitigate a non-negligible bias issue inherent to the natural "plug-in" estimator, we develop de-biased estimators that (1) achieve minimax lower bounds for a family of scenarios (modulo some logarithmic factor), and (2) can be computed in a data-driven manner without sample splitting. Noteworthily, the proposed estimators are nearly minimax optimal even when the associated eigen-gap is substantially smaller than what is required in prior theory.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.