MINE: Towards Continuous Depth MPI with NeRF for Novel View Synthesis

03/27/2021
by   Jiaxin Li, et al.
0

In this paper, we propose MINE to perform novel view synthesis and depth estimation via dense 3D reconstruction from a single image. Our approach is a continuous depth generalization of the Multiplane Images (MPI) by introducing the NEural radiance fields (NeRF). Given a single image as input, MINE predicts a 4-channel image (RGB and volume density) at arbitrary depth values to jointly reconstruct the camera frustum and fill in occluded contents. The reconstructed and inpainted frustum can then be easily rendered into novel RGB or depth views using differentiable rendering. Extensive experiments on RealEstate10K, KITTI and Flowers Light Fields show that our MINE outperforms state-of-the-art by a large margin in novel view synthesis. We also achieve competitive results in depth estimation on iBims-1 and NYU-v2 without annotated depth supervision. Our source code is available at https://github.com/vincentfung13/MINE

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset