Millimeter Wave Full-Duplex Networks: MAC Design and Throughput Optimization
Full-duplex (FD) technique can remarkably boost the network capacity in the millimeter wave (mmWave) bands by enabling simultaneous transmission and reception. However, due to directional transmission and large bandwidth, the throughput and fairness performance of a mmWave FD network are affected by deafness and directional hidden-node (HN) problems and severe residual self-interference (RSI). To address these challenges, this paper proposes a directional FD medium access control protocol, named DFDMAC to support typical directional FD transmission modes by exploiting FD to transmit control frames to reduce signaling overhead. Furthermore, a novel busy-tone mechanism is designed to avoid deafness and directional HN problems and improve the fairness of channel access. To reduce the impact of RSI on link throughput, we formulate a throughput maximization problem for different FD transmission modes and propose a power control algorithm to obtain the optimal transmit power. Simulation results show that the proposed DFDMAC can improve the network throughput and fairness by over 60 existing MAC protocol in IEEE 802.11ay. Moreover, the proposed power control algorithm can effectively enhance the network throughput.
READ FULL TEXT