MicroROM: An Efficient and Accurate Reduced Order Method to Solve Many-Query Problems in Micro-Motility

06/24/2020
by   Nicola Giuliani, et al.
0

In the study of micro-swimmers, both artificial and biological ones, many-query problems arise naturally. Even with the use of advanced high performance computing (HPC), it is not possible to solve this kind of problems in an acceptable amount of time. Various approximations of the Stokes equation have been considered in the past to ease such computational efforts but they introduce non-negligible errors that can easily make the solution of the problem inaccurate and unreliable. Reduced order modeling solves this issue by taking advantage of a proper subdivision between a computationally expensive offline phase and a fast and efficient online stage. This work presents the coupling of Boundary Element Method (BEM) and Reduced Basis (RB) Reduced Order Modeling (ROM) in two models of practical interest, obtaining accurate and reliable solutions to different many-query problems. Comparisons of standard reduced order modeling approaches in different simulation settings and a comparison to typical approximations to Stokes equations are also shown. Different couplings between a solver based on a HPC boundary element method for micro-motility problems and reduced order models are presented in detail. The methodology is tested on two different models: a robotic-bacterium-like and an Eukaryotic-like swimmer, and in each case two resolution strategies for the swimming problem, the split and monolithic one, are used as starting points for the ROM. An efficient and accurate reconstruction of the performance of interest is achieved in both cases proving the effectiveness of our strategy.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
02/11/2021

Performance of nonconforming spectral element method for Stokes problems

In this paper, we study the performance of the non-conforming least-squa...
research
10/10/2020

A Reduced Order Cut Finite Element method for geometrically parameterized steady and unsteady Navier-Stokes problems

This work focuses on steady and unsteady Navier-Stokes equations in a re...
research
10/21/2021

A hyper-reduced MAC scheme for the parametric Stokes and Navier-Stokes equations

The need for accelerating the repeated solving of certain parametrized s...
research
01/24/2022

Embedded domain Reduced Basis Models for the shallow water hyperbolic equations with the Shifted Boundary Method

We consider fully discrete embedded finite element approximations for a ...
research
03/25/2022

CVEM-BEM coupling with decoupled orders for 2D exterior Poisson problems

For the solution of 2D exterior Dirichlet Poisson problems we propose th...
research
10/23/2017

POD-based reduced-order model of an eddy-current levitation problem

The accurate and efficient treatment of eddy-current problems with movem...
research
11/09/2022

A micro-macro decomposed reduced basis method for the time-dependent radiative transfer equation

Kinetic transport equations are notoriously difficult to simulate becaus...

Please sign up or login with your details

Forgot password? Click here to reset