MGSampler: An Explainable Sampling Strategy for Video Action Recognition

04/20/2021
by   Yuan Zhi, et al.
0

Frame sampling is a fundamental problem in video action recognition due to the essential redundancy in time and limited computation resources. The existing sampling strategy often employs a fixed frame selection and lacks the flexibility to deal with complex variations in videos. In this paper, we present an explainable, adaptive, and effective frame sampler, called Motion-guided Sampler (MGSampler). Our basic motivation is that motion is an important and universal signal that can drive us to select frames from videos adaptively. Accordingly, we propose two important properties in our MGSampler design: motion sensitive and motion uniform. First, we present two different motion representations to enable us to efficiently distinguish the motion salient frames from the background. Then, we devise a motion-uniform sampling strategy based on the cumulative motion distribution to ensure the sampled frames evenly cover all the important frames with high motion saliency. Our MGSampler yields a new principled and holistic sample scheme, that could be incorporated into any existing video architecture. Experiments on five benchmarks demonstrate the effectiveness of our MGSampler over previously fixed sampling strategies, and also its generalization power across different backbones, video models, and datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset