Metrics for Multivariate Dictionaries

02/18/2013
by   Sylvain Chevallier, et al.
0

Overcomplete representations and dictionary learning algorithms kept attracting a growing interest in the machine learning community. This paper addresses the emerging problem of comparing multivariate overcomplete representations. Despite a recurrent need to rely on a distance for learning or assessing multivariate overcomplete representations, no metrics in their underlying spaces have yet been proposed. Henceforth we propose to study overcomplete representations from the perspective of frame theory and matrix manifolds. We consider distances between multivariate dictionaries as distances between their spans which reveal to be elements of a Grassmannian manifold. We introduce Wasserstein-like set-metrics defined on Grassmannian spaces and study their properties both theoretically and numerically. Indeed a deep experimental study based on tailored synthetic datasetsand real EEG signals for Brain-Computer Interfaces (BCI) have been conducted. In particular, the introduced metrics have been embedded in clustering algorithm and applied to BCI Competition IV-2a for dataset quality assessment. Besides, a principled connection is made between three close but still disjoint research fields, namely, Grassmannian packing, dictionary learning and compressed sensing.

READ FULL TEXT

Authors

page 1

page 2

page 3

page 4

04/15/2019

A Fast Dictionary Learning Method for Coupled Feature Space Learning

In this letter, we propose a novel computationally efficient coupled dic...
03/04/2013

Multivariate Temporal Dictionary Learning for EEG

This article addresses the issue of representing electroencephalographic...
03/03/2013

Learning Stable Multilevel Dictionaries for Sparse Representations

Sparse representations using learned dictionaries are being increasingly...
01/15/2017

Boosting Dictionary Learning with Error Codes

In conventional sparse representations based dictionary learning algorit...
04/16/2016

Efficient Dictionary Learning with Sparseness-Enforcing Projections

Learning dictionaries suitable for sparse coding instead of using engine...
12/03/2021

A Structured Dictionary Perspective on Implicit Neural Representations

Propelled by new designs that permit to circumvent the spectral bias, im...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.