Metalearning for Feature Selection

03/20/2017
by   Ben Goertzel, et al.
0

A general formulation of optimization problems in which various candidate solutions may use different feature-sets is presented, encompassing supervised classification, automated program learning and other cases. A novel characterization of the concept of a "good quality feature" for such an optimization problem is provided; and a proposal regarding the integration of quality based feature selection into metalearning is suggested, wherein the quality of a feature for a problem is estimated using knowledge about related features in the context of related problems. Results are presented regarding extensive testing of this "feature metalearning" approach on supervised text classification problems; it is demonstrated that, in this context, feature metalearning can provide significant and sometimes dramatic speedup over standard feature selection heuristics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset