Meta Particle Flow for Sequential Bayesian Inference

02/02/2019
by   Xinshi Chen, et al.
0

We present a particle flow realization of Bayes' rule, where an ODE-based neural operator is used to transport particles from a prior to its posterior after a new observation. We prove that such an ODE operator exists and its neural parameterization can be trained in a meta-learning framework, allowing this operator to reason about the effect of an individual observation on the posterior, and thus generalize across different priors, observations and to online Bayesian inference. We demonstrated the generalization ability of our particle flow Bayes operator in several canonical and high dimensional examples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset