Meta Back-translation

02/15/2021 ∙ by Hieu Pham, et al. ∙ 0

Back-translation is an effective strategy to improve the performance of Neural Machine Translation (NMT) by generating pseudo-parallel data. However, several recent works have found that better translation quality of the pseudo-parallel data does not necessarily lead to better final translation models, while lower-quality but more diverse data often yields stronger results. In this paper, we propose a novel method to generate pseudo-parallel data from a pre-trained back-translation model. Our method is a meta-learning algorithm which adapts a pre-trained back-translation model so that the pseudo-parallel data it generates would train a forward-translation model to do well on a validation set. In our evaluations in both the standard datasets WMT En-De'14 and WMT En-Fr'14, as well as a multilingual translation setting, our method leads to significant improvements over strong baselines. Our code will be made available.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.