Message complexity of population protocols

by   Talley Amir, et al.

The standard population protocol model assumes that when two agents interact, each observes the entire state of the other agent. We initiate the study of the message complexity for population protocols, where the state of an agent is divided into an externally-visible message and an internal component, where only the message can be observed by the other agent in an interaction. We consider the case of O(1) message complexity. When time is unrestricted, we obtain an exact characterization of the stably computable predicates based on the number of internal states s(n): If s(n) = o(n) then the protocol computes a semilinear predicate (unlike the original model, which can compute non-semilinear predicates with s(n) = O(log n)), and otherwise it computes a predicate decidable by a nondeterministic O(n log s(n))-space-bounded Turing machine. We then consider time complexity, introducing novel O(polylog(n)) expected time protocols for junta/leader election and general purpose broadcast correct with high probability, and approximate and exact population size counting correct with probability 1. Finally, we show that the main constraint on the power of bounded-message-size protocols is the size of the internal states: with unbounded internal states, any computable function can be computed with probability 1 in the limit by a protocol that uses only one-bit messages.



There are no comments yet.


page 1

page 2

page 3

page 4


On Counting the Population Size

We consider the problem of counting the population size in the populatio...

Exact size counting in uniform population protocols in nearly logarithmic time

We study population protocols: networks of anonymous agents that interac...

Succinct Population Protocols for Presburger Arithmetic

Angluin et al. proved that population protocols compute exactly the pred...

Running Time Analysis of Broadcast Consensus Protocols

Broadcast consensus protocols (BCPs) are a model of computation, in whic...

Broadcast Distributed Voting Algorithm in Population Protocols

We consider the problem of multi-choice majority voting in a network of ...

Dynamic size counting in population protocols

The population protocol model describes a network of anonymous agents th...

Message Type Identification of Binary Network Protocols using Continuous Segment Similarity

Protocol reverse engineering based on traffic traces infers the behavior...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.