Meso-scale Finite Element Modeling of Alkali-Silica-Reaction

07/06/2020
by   Roozbeh Rezakhani, et al.
0

The alkali-silica reaction (ASR) in concrete is a chemical reaction, which produces an expansive product, generally called ”ASR gel”, and causes cracking and damage in concrete over time. Affecting numerous infrastructures all around the world, ASR has been the topic of much research over the past decades. In spite of that, many aspects of this reaction are still unknown. In this numerical-investigation paper, a three-dimensional concrete meso-structure model is simulated using the finite-element method. Coarse aggregates, cement paste, and ASR gel are explicitly represented. A temperature dependent eigen-strain is applied on the simulated ASR gel pockets to capture their expansive behavior. This applies pressure on the surrounding aggregates and the cement paste, leading to cracks initiation and propagation. Free expansion of concrete specimens due to ASR is modeled and validated using experimental data. Influence of different key factors on damage generation in aggregates and paste and macroscopic expansion are discussed.

READ FULL TEXT

page 3

page 5

page 9

page 11

research
06/02/2023

A phase-field chemo-mechanical model for corrosion-induced cracking in reinforced concrete

We present a new mechanistic framework for corrosion-induced cracking in...
research
03/21/2022

Stochastic Galerkin finite element method for nonlinear elasticity and application to reinforced concrete members

We develop a stochastic Galerkin finite element method for nonlinear ela...
research
09/01/2020

Generalized local projection stabilized finite element method for advection-reaction problems

A priori analysis for a generalized local projection stabilized finite e...
research
03/15/2020

Finite-Element Formulation for Advection-Reaction Equations with Change of Variable and Discontinuity Capturing

We propose a change of variable approach and discontinuity capturing met...
research
06/14/2022

Abstraction-Based Segmental Simulation of Chemical Reaction Networks

Simulating chemical reaction networks is often computationally demanding...

Please sign up or login with your details

Forgot password? Click here to reset