Mending Partial Solutions with Few Changes

09/12/2022
by   Darya Melnyk, et al.
0

In this paper, we study the notion of mending, i.e. given a partial solution to a graph problem, we investigate how much effort is needed to turn it into a proper solution. For example, if we have a partial coloring of a graph, how hard is it to turn it into a proper coloring? In prior work (SIROCCO 2022), this question was formalized and studied from the perspective of mending radius: if there is a hole that we need to patch, how far do we need to modify the solution? In this work, we investigate a complementary notion of mending volume: how many nodes need to be modified to patch a hole? We focus on the case of locally checkable labeling problems (LCLs) in trees, and show that already in this setting there are two infinite hierarchies of problems: for infinitely many values 0 < α≤ 1, there is an LCL problem with mending volume Θ(n^α), and for infinitely many values k ≥ 1, there is an LCL problem with mending volume Θ(log^k n). Hence the mendability of LCL problems on trees is a much more fine-grained question than what one would expect based on the mending radius alone. We define three variants of the theme: (1) existential mending volume, i.e., how many nodes need to be modified, (2) expected mending volume, i.e., how many nodes we need to explore to find a patch if we use randomness, and (3) deterministic mending volume, i.e., how many nodes we need to explore if we use a deterministic algorithm. We show that all three notions are distinct from each other, and we analyze the landscape of the complexities of LCL problems for the respective models.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
02/17/2021

Local Mending

In this work we introduce the graph-theoretic notion of mendability: for...
research
07/18/2019

Seeing Far vs. Seeing Wide: Volume Complexity of Local Graph Problems

Consider a graph problem that is locally checkable but not locally solva...
research
04/11/2019

Locality of not-so-weak coloring

Many graph problems are locally checkable: a solution is globally feasib...
research
08/08/2023

On the Node-Averaged Complexity of Locally Checkable Problems on Trees

Over the past decade, a long line of research has investigated the distr...
research
02/09/2022

The Landscape of Distributed Complexities on Trees and Beyond

We study the local complexity landscape of locally checkable labeling (L...
research
08/31/2022

Making Self-Stabilizing any Locally Greedy Problem

We propose a way to transform synchronous distributed algorithms solving...

Please sign up or login with your details

Forgot password? Click here to reset