Memristor-based cryogenic programmable DC sources for scalable in-situ quantum-dot control

by   Pierre-Antoine Mouny, et al.

Current quantum systems based on spin qubits are controlled by classical electronics located outside the cryostat at room temperature. This approach creates a major wiring bottleneck, which is one of the main roadblocks toward truly scalable quantum computers. Thus, we propose a scalable memristor-based programmable DC source that could be used to perform biasing of quantum dots inside of the cryostat (i.e. in-situ). This novel cryogenic approach would enable to control the applied voltage on the electrostatic gates by programming the resistance of the memristors, thus storing in the latter the appropriate conditions to form the quantum dots. In this study, we first demonstrate multilevel resistance programming of a TiO2-based memristors at 4.2 K, an essential feature to achieve voltage tunability of the memristor-based DC source. We then report hardwarebased simulations of the electrical performance of the proposed DC source. A cryogenic TiO2-based memristor model fitted on our experimental data at 4.2 K was used to show a 1 V voltage range and 100 uV in-situ memristor-based DC source. Finally, we simulate the biasing of double quantum dots enabling sub-2 minutes in-situ charge stability diagrams. This demonstration is a first step towards more advanced cryogenic applications for resistive memories such as cryogenic control electronics for quantum computers.


Separation and approximate separation of multipartite quantum gates

The number of qubits of current quantum computers is one of the most dom...

Artificial Neural Network-Based Voltage Control of DC/DC Converter for DC Microgrid Applications

The rapid growth of renewable energy technology enables the concept of m...

Classical and Quantum Data Interaction in Programming Languages: A Runtime Architecture

We propose a runtime architecture that can be used in the development of...

An Experimental Microarchitecture for a Superconducting Quantum Processor

Quantum computers promise to solve certain problems that are intractable...

Equivalence of three quantum algorithms: Privacy amplification, error correction, and data compression

Privacy amplification (PA) is an indispensable component in classical an...

Online Convex Optimization of Programmable Quantum Computers to Simulate Time-Varying Quantum Channels

Simulating quantum channels is a fundamental primitive in quantum comput...

Freeform shape optimization of a compact DC photo-electron gun using isogeometric analysis

Compact DC high-voltage photo-electron guns are able to meet the challen...

Please sign up or login with your details

Forgot password? Click here to reset