Memory Leak Detection Algorithms in the Cloud-based Infrastructure

06/16/2021
by   Anshul Jindal, et al.
0

A memory leak in an application deployed on the cloud can affect the availability and reliability of the application. Therefore, identifying and ultimately resolve it quickly is highly important. However, in the production environment running on the cloud, memory leak detection is a challenge without the knowledge of the application or its internal object allocation details. This paper addresses this challenge of detection of memory leaks in cloud-based infrastructure without having any internal knowledge by introducing two novel machine learning-based algorithms: Linear Backward Regression (LBR) and Precog and, their two variants: Linear Backward Regression with Change Points Detection (LBRCPD) and Precog with Maximum Filteration (PrecogMF). These algorithms only use one metric i.e the system's memory utilization on which the application is deployed for detection of a memory leak. The developed algorithm's accuracy was tested on 60 virtual machines manually labeled memory utilization data and it was found that the proposed PrecogMF algorithm achieves the highest accuracy score of 85 decreasing the overall compute time by 80 The paper also presents the different memory leak patterns found in the various memory leak applications and are further classified into different classes based on their visual representation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset