Memorization Through the Lens of Curvature of Loss Function Around Samples
Neural networks are overparametrized and easily overfit the datasets they train on. In the extreme case, it is shown that they can memorize a training set with fully randomized labels. We propose using the curvature of loss function around the training sample as a measure of its memorization, averaged over all training epochs. We use this to study the generalization versus memorization properties of different samples in popular image datasets. We visualize samples with the highest curvature of loss around them, and show that these visually correspond to long-tailed, mislabeled or conflicting samples. This analysis helps us find a, to the best of our knowledge, novel failure model on the CIFAR100 dataset, that of duplicated images with different labels. We also synthetically mislabel a proportion of the dataset by randomly corrupting the labels of a few samples, and show that sorting by curvature yields high AUROC values for identifying the mislabeled samples.
READ FULL TEXT