Medusa: A Scalable Interconnect for Many-Port DNN Accelerators and Wide DRAM Controller Interfaces

07/11/2018
by   Yongming Shen, et al.
0

To cope with the increasing demand and computational intensity of deep neural networks (DNNs), industry and academia have turned to accelerator technologies. In particular, FPGAs have been shown to provide a good balance between performance and energy efficiency for accelerating DNNs. While significant research has focused on how to build efficient layer processors, the computational building blocks of DNN accelerators, relatively little attention has been paid to the on-chip interconnects that sit between the layer processors and the FPGA's DRAM controller. We observe a disparity between DNN accelerator interfaces, which tend to comprise many narrow ports, and FPGA DRAM controller interfaces, which tend to be wide buses. This mismatch causes traditional interconnects to consume significant FPGA resources. To address this problem, we designed Medusa: an optimized FPGA memory interconnect which transposes data in the interconnect fabric, tailoring the interconnect to the needs of DNN layer processors. Compared to a traditional FPGA interconnect, our design can reduce LUT and FF use by 4.7x and 6.0x, and improves frequency by 1.8x.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
02/26/2020

DNN-Chip Predictor: An Analytical Performance Predictor for DNN Accelerators with Various Dataflows and Hardware Architectures

The recent breakthroughs in deep neural networks (DNNs) have spurred a t...
research
06/15/2018

RAPIDNN: In-Memory Deep Neural Network Acceleration Framework

Deep neural networks (DNN) have demonstrated effectiveness for various a...
research
01/06/2020

AutoDNNchip: An Automated DNN Chip Predictor and Builder for Both FPGAs and ASICs

Recent breakthroughs in Deep Neural Networks (DNNs) have fueled a growin...
research
08/28/2020

DNNExplorer: A Framework for Modeling and Exploring a Novel Paradigm of FPGA-based DNN Accelerator

Existing FPGA-based DNN accelerators typically fall into two design para...
research
07/10/2018

Eyeriss v2: A Flexible and High-Performance Accelerator for Emerging Deep Neural Networks

The design of DNNs has increasingly focused on reducing the computationa...
research
03/05/2019

Integrating NVIDIA Deep Learning Accelerator (NVDLA) with RISC-V SoC on FireSim

NVDLA is an open-source deep neural network (DNN) accelerator which has ...
research
01/04/2019

A Scalable Framework for Acceleration of CNN Training on Deeply-Pipelined FPGA Clusters with Weight and Workload Balancing

Deep Neural Networks (DNNs) have revolutionized numerous applications, b...

Please sign up or login with your details

Forgot password? Click here to reset