Medical Code Prediction from Discharge Summary: Document to Sequence BERT using Sequence Attention
Clinical notes are unstructured text generated by clinicians during patient encounters. Clinical notes are usually accompanied by a set of metadata codes from the international classification of diseases (ICD). ICD code is an important code used in a variety of operations, including insurance, reimbursement, medical diagnosis, etc. Therefore, it is important to classify ICD codes quickly and accurately. However, annotating these codes is costly and time-consuming. So we propose a model based on bidirectional encoder representations from transformer (BERT) using the sequence attention method for automatic ICD code assignment. We evaluate our ap-proach on the MIMIC-III benchmark dataset. Our model achieved performance of Macro-aver-aged F1: 0.62898 and Micro-averaged F1: 0.68555, and is performing better than a performance of the previous state-of-the-art model. The contribution of this study proposes a method of using BERT that can be applied to documents and a sequence attention method that can capture im-portant sequence information appearing in documents.
READ FULL TEXT