Median Pixel Difference Convolutional Network for Robust Face Recognition
Face recognition is one of the most active tasks in computer vision and has been widely used in the real world. With great advances made in convolutional neural networks (CNN), lots of face recognition algorithms have achieved high accuracy on various face datasets. However, existing face recognition algorithms based on CNNs are vulnerable to noise. Noise corrupted image patterns could lead to false activations, significantly decreasing face recognition accuracy in noisy situations. To equip CNNs with built-in robustness to noise of different levels, we proposed a Median Pixel Difference Convolutional Network (MeDiNet) by replacing some traditional convolutional layers with the proposed novel Median Pixel Difference Convolutional Layer (MeDiConv) layer. The proposed MeDiNet integrates the idea of traditional multiscale median filtering with deep CNNs. The MeDiNet is tested on the four face datasets (LFW, CA-LFW, CP-LFW, and YTF) with versatile settings on blur kernels, noise intensities, scales, and JPEG quality factors. Extensive experiments show that our MeDiNet can effectively remove noisy pixels in the feature map and suppress the negative impact of noise, leading to achieving limited accuracy loss under these practical noises compared with the standard CNN under clean conditions.
READ FULL TEXT