DeepAI AI Chat
Log In Sign Up

MEBF: a fast and efficient Boolean matrix factorization method

by   Changlin Wan, et al.
Purdue University
Indiana University

Boolean matrix has been used to represent digital information in many fields, including bank transaction, crime records, natural language processing, protein-protein interaction, etc. Boolean matrix factorization (BMF) aims to find an approximation of a binary matrix as the Boolean product of two low rank Boolean matrices, which could generate vast amount of information for the patterns of relationships between the features and samples. Inspired by binary matrix permutation theories and geometric segmentation, we developed a fast and efficient BMF approach called MEBF (Median Expansion for Boolean Factorization). Overall, MEBF adopted a heuristic approach to locate binary patterns presented as submatrices that are dense in 1's. At each iteration, MEBF permutates the rows and columns such that the permutated matrix is approximately Upper Triangular-Like (UTL) with so-called Simultaneous Consecutive-ones Property (SC1P). The largest submatrix dense in 1 would lies on the upper triangular area of the permutated matrix, and its location was determined based on a geometric segmentation of a triangular. We compared MEBF with other state of the art approaches on data scenarios with different sparsity and noise levels. MEBF demonstrated superior performances in lower reconstruction error, and higher computational efficiency, as well as more accurate sparse patterns than popular methods such as ASSO, PANDA and MP. We demonstrated the application of MEBF on both binary and non-binary data sets, and revealed its further potential in knowledge retrieving and data denoising.


page 1

page 3

page 4

page 5

page 6

page 7

page 8

page 9


Fast And Efficient Boolean Matrix Factorization By Geometric Segmentation

Boolean matrix has been used to represent digital information in many fi...

The Trustworthy Pal: Controlling the False Discovery Rate in Boolean Matrix Factorization

Boolean matrix factorization (BMF) is a popular and powerful technique f...

Boolean and 𝔽_p-Matrix Factorization: From Theory to Practice

Boolean Matrix Factorization (BMF) aims to find an approximation of a gi...

Recent Developments in Boolean Matrix Factorization

The goal of Boolean Matrix Factorization (BMF) is to approximate a given...

Factorizations of Binary Matrices – Rank Relations and the Uniqueness of Boolean Decompositions

The application of binary matrices are numerous. Representing a matrix a...

Bayesian Boolean Matrix Factorisation

Boolean matrix factorisation aims to decompose a binary data matrix into...

On the Complexity and Approximation of Binary Evidence in Lifted Inference

Lifted inference algorithms exploit symmetries in probabilistic models t...