Mean Payoff Optimization for Systems of Periodic Service and Maintenance
Consider oriented graph nodes requiring periodic visits by a service agent. The agent moves among the nodes and receives a payoff for each completed service task, depending on the time elapsed since the previous visit to a node. We consider the problem of finding a suitable schedule for the agent to maximize its long-run average payoff per time unit. We show that the problem of constructing an ε-optimal schedule is PSPACE-hard for every fixed ε≥ 0, and that there exists an optimal periodic schedule of exponential length. We propose randomized finite-memory (RFM) schedules as a compact description of the agent's strategies and design an efficient algorithm for constructing RFM schedules. Furthermore, we construct deterministic periodic schedules by sampling from RFM schedules.
READ FULL TEXT