Mean Field Analysis of Neural Networks: A Central Limit Theorem

08/28/2018
by   Justin Sirignano, et al.
4

Machine learning has revolutionized fields such as image, text, and speech recognition. There's also growing interest in applying machine and deep learning methods in science, engineering, medicine, and finance. Despite their immense success in practice, there is limited mathematical understanding of neural networks. We mathematically study neural networks in the asymptotic regime of simultaneously (A) large network sizes and (B) large numbers of stochastic gradient descent training iterations. We rigorously prove that the neural network satisfies a central limit theorem. Our result describes the neural network's fluctuations around its mean-field limit. The fluctuations have a Gaussian distribution and satisfy a stochastic partial differential equation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset