Maximum-utility popular matchings with bounded instability

05/04/2022
by   Ildikó Schlotter, et al.
0

In a graph where vertices have preferences over their neighbors, a matching is called popular if it does not lose a head-to-head election against any other matching when the vertices vote between the matchings. Popular matchings can be seen as an intermediate category between stable matchings and maximum-size matchings. In this paper, we aim to maximize the utility of a matching that is popular but admits only a few blocking edges. For general graphs already finding a popular matching with at most one blocking edge is NP-complete. For bipartite instances, we study the problem of finding a maximum-utility popular matching with a bound on the number (or more generally, the cost) of blocking edges applying a multivariate approach. We show classical and parameterized hardness results for severely restricted instances. By contrast, we design an algorithm for instances where preferences on one side admit a master list, and show that this algorithm is optimal.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro