Maximum Likelihood With a Time Varying Parameter

02/28/2023
by   Alberto Lanconelli, et al.
0

We consider the problem of tracking an unknown time varying parameter that characterizes the probabilistic evolution of a sequence of independent observations. To this aim, we propose a stochastic gradient descent-based recursive scheme in which the log-likelihood of the observations acts as time varying gain function. We prove convergence in mean-square error in a suitable neighbourhood of the unknown time varying parameter and illustrate the details of our findings in the case where data are generated from distributions belonging to the exponential family.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro