Maximum likelihood recursive state estimation in state-space models: A new approach based on statistical analysis of incomplete data

11/09/2022
by   Budhi Arta Surya, et al.
0

This paper revisits the work of Rauch et al. (1965) and develops a novel method for recursive maximum likelihood particle filtering for general state-space models. The new method is based on statistical analysis of incomplete observations of the systems. Score function and conditional observed information of the incomplete observations/data are introduced and their distributional properties are discussed. Some identities concerning the score function and information matrices of the incomplete data are derived. Maximum likelihood estimation of state-vector is presented in terms of the score function and observed information matrices. In particular, to deal with nonlinear state-space, a sequential Monte Carlo method is developed. It is given recursively by an EM-gradient-particle filtering which extends the work of Lange (1995) for state estimation. To derive covariance matrix of state-estimation errors, an explicit form of observed information matrix is proposed. It extends Louis (1982) general formula for the same matrix to state-vector estimation. Under (Neumann) boundary conditions of state transition probability distribution, the inverse of this matrix coincides with the Cramer-Rao lower bound on the covariance matrix of estimation errors of unbiased state-estimator. In the case of linear models, the method shows that the Kalman filter is a fully efficient state estimator whose covariance matrix of estimation error coincides with the Cramer-Rao lower bound. Some numerical examples are discussed to exemplify the main results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro