Maximum-Likelihood Network Reconstruction for SIS Processes is NP-Hard
The knowledge of the network topology is imperative to precisely describing the viral dynamics of an SIS epidemic process. In scenarios for which the network topology is unknown, one resorts to reconstructing the network from observing the viral state trace. This work focusses on the impact of the viral state observations on the computational complexity of the resulting network reconstruction problem. We propose a novel method of constructing a specific class of viral state traces from which the inference of the presence or absence of links is either easy or difficult. In particular, we use this construction to prove that the maximum-likelihood SIS network reconstruction is NP-hard. The NP-hardness holds for any adjacency matrix of a graph which is connected.
READ FULL TEXT