Maximum Classifier Discrepancy for Unsupervised Domain Adaptation

12/07/2017
by   Kuniaki Saito, et al.
0

In this work, we present a method for unsupervised domain adaptation (UDA), where we aim to transfer knowledge from a label-rich domain (i.e., a source domain) to an unlabeled domain (i.e., a target domain). Many adversarial learning methods have been proposed for this task. These methods train domain classifier networks (i.e., a discriminator) to discriminate distinguish the features as either a source or target and train a feature generator network to mimic the discriminator.However, the domain classifier only tries to distinguish the features as a source or target and thus does not consider task-specific decision boundaries between classes. Therefore, a trained generator can generate ambiguous features near class boundaries. To solve the problem, we propose a new approach that attempts to align distributions of source and target by utilizing the task-specific decision boundaries. We propose to utilize task-specific classifiers as discriminators that try to detect target samples that are far from the support of the source. A feature generator learns to generate target features inside the support to fool the classifiers. Since the generator uses feedback from task-specific classifiers, it avoids generating target features near class boundaries. Our method outperforms other methods on several datasets of image classification and semantic segmentation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset