Maximizing Non-monotone/Non-submodular Functions by Multi-objective Evolutionary Algorithms
Evolutionary algorithms (EAs) are a kind of nature-inspired general-purpose optimization algorithm, and have shown empirically good performance in solving various real-word optimization problems. However, due to the highly randomized and complex behavior, the theoretical analysis of EAs is difficult and is an ongoing challenge, which has attracted a lot of research attentions. During the last two decades, promising results on the running time analysis (one essential theoretical aspect) of EAs have been obtained, while most of them focused on isolated combinatorial optimization problems, which do not reflect the general-purpose nature of EAs. To provide a general theoretical explanation of the behavior of EAs, it is desirable to study the performance of EAs on a general class of combinatorial optimization problems. To the best of our knowledge, this direction has been rarely touched and the only known result is the provably good approximation guarantees of EAs for the problem class of maximizing monotone submodular set functions with matroid constraints, which includes many NP-hard combinatorial optimization problems. The aim of this work is to contribute to this line of research. As many combinatorial optimization problems also involve non-monotone or non-submodular objective functions, we consider these two general problem classes, maximizing non-monotone submodular functions without constraints and maximizing monotone non-submodular functions with a size constraint. We prove that a simple multi-objective EA called GSEMO can generally achieve good approximation guarantees in polynomial expected running time.
READ FULL TEXT