Maximizing Efficiency in Dynamic Matching Markets

03/04/2018
by   Itai Ashlagi, et al.
0

We study the problem of matching agents who arrive at a marketplace over time and leave after d time periods. Agents can only be matched while they are present in the marketplace. Each pair of agents can yield a different match value, and the planner's goal is to maximize the total value over a finite time horizon. We study matching algorithms that perform well over any sequence of arrivals when there is no a priori information about the match values or arrival times. Our main contribution is a 1/4-competitive algorithm. The algorithm randomly selects a subset of agents who will wait until right before their departure to get matched, and maintains a maximum-weight matching with respect to the other agents. The primal-dual analysis of the algorithm hinges on a careful comparison between the initial dual value associated with an agent when it first arrives, and the final value after d time steps. It is also shown that no algorithm is 1/2-competitive. We extend the model to the case in which departure times are drawn i.i.d from a distribution with non-decreasing hazard rate, and establish a 1/8-competitive algorithm in this setting. Finally we show on real-world data that a modified version of our algorithm performs well in practice.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro