Maximin share allocations on cycles

04/25/2019
by   Zbigniew Lonc, et al.
0

The problem of fair division of indivisible goods is a fundamental problem of social choice. Recently, the problem was extended to the case when goods form a graph and the goal is to allocate goods to agents so that each agent's bundle forms a connected subgraph. For the maximin share fairness criterion researchers proved that if goods form a tree, allocations offering each agent a bundle of at least her maximin share value always exist. Moreover, they can be found in polynomial time. We consider here the problem of maximin share allocations of goods on a cycle. Despite the simplicity of the graph, the problem turns out to be significantly harder than its tree version. We present cases when maximin share allocations of goods on cycles exist and provide results on allocations guaranteeing each agent a certain portion of her maximin share. We also study algorithms for computing maximin share allocations of goods on cycles.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset