Max-Min Power Control in Downlink Massive MIMO with Distributed Antenna Arrays
In this paper, we investigate optimal downlink power allocation in massive multiple-input multiple-output (MIMO) networks with distributed antenna arrays (DAAs) under correlated and uncorrelated channel fading. In DAA massive MIMO, the base station (BS) consists of multiple antenna sub-arrays. Notably, the antenna sub-arrays are deployed in arbitrary locations within a DAA massive MIMO cell. Consequently, the distance-dependent large-scale propagation coefficients are different from a user to these different antenna sub-arrays, which makes power control a challenging problem. We assume that the network operates in time-division duplex mode, where each BS obtains the channel estimates via uplink pilots. Based on the channel estimates, the BSs perform maximum-ratio transmission in the downlink. We then derive a closed-form signal-to-interference-plus-noise ratio (SINR) expression, where the channels are subject to correlated fading. Based on the SINR expression, we propose a networkwide max-min power control algorithm to ensure that each user in the network receives a uniform quality of service. Numerical results demonstrate the performance advantages offered by DAA massive MIMO. For some specific scenarios, DAA massive MIMO can improve the average per-user throughput up to 55 factor in determining the performance of DAA massive MIMO.
READ FULL TEXT