Max-C and Min-D Projection Autoassociative Fuzzy Morphological Memories: Theory and Applications for Face Recognition

02/11/2019
by   Alex Santana dos Santos, et al.
0

Max-C and min-D projection autoassociative fuzzy morphological memories (max-C and min-D PAFMMs) are two layer feedforward fuzzy morphological neural networks able to implement an associative memory designed for the storage and retrieval of finite fuzzy sets or vectors on a hypercube. In this paper we address the main features of these autoassociative memories, which include unlimited absolute storage capacity, fast retrieval of stored items, few spurious memories, and an excellent tolerance to either dilative noise or erosive noise. Particular attention is given to the so-called PAFMM of Zadeh which, besides performing no floating-point operations, exhibit the largest noise tolerance among max-C and min-D PAFMMs. Computational experiments reveal that Zadeh's max-C PFAMM, combined with a noise masking strategy, yields a fast and robust classifier with strong potential for face recognition.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset