Mathematical decisions and non-causal elements of explainable AI

10/30/2019
by   Atoosa Kasirzadeh, et al.
0

Recent conceptual discussion on the nature of the explainability of Artificial Intelligence (AI) has largely been limited to data-driven investigations. This paper identifies some shortcomings of this approach to help strengthen the debate on this subject. Building on recent philosophical work on the nature of explanations, I demonstrate the significance of two non-data driven, non-causal explanatory elements: (1) mathematical structures that are the grounds for capturing the decision-making situation; (2) statistical and optimality facts in terms of which the algorithm is designed and implemented. I argue that these elements feature directly in important aspects of AI explainability. I then propose a hierarchical framework that acknowledges the existence of various types of explanation, each of which reveals an aspect of explanation, and answers to a different kind of why-question. The usefulness of this framework will be illustrated by bringing it to bear on some salient normative concerns about the use of AI decision-making systems in society.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro