Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone Image

04/16/2018
by   Zhengqin Li, et al.
0

We propose a material acquisition approach to recover the spatially-varying BRDF and normal map of a near-planar surface from a single image captured by a handheld mobile phone camera. Our method images the surface under arbitrary environment lighting with the flash turned on, thereby avoiding shadows while simultaneously capturing high-frequency specular highlights. We train a CNN to regress an SVBRDF and surface normals from this image. Our network is trained using a large-scale SVBRDF dataset and designed to incorporate physical insights for material estimation, including an in-network rendering layer to model appearance and a material classifier to provide additional supervision during training. We refine the results from the network using a dense CRF module whose terms are designed specifically for our task. The framework is trained end-to-end and produces high quality results for a variety of materials. We provide extensive ablation studies to evaluate our network on both synthetic and real data, while demonstrating significant improvements in comparisons with prior works.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset