Massively Multilingual Neural Grapheme-to-Phoneme Conversion
Grapheme-to-phoneme conversion (g2p) is necessary for text-to-speech and automatic speech recognition systems. Most g2p systems are monolingual: they require language-specific data or handcrafting of rules. Such systems are difficult to extend to low resource languages, for which data and handcrafted rules are not available. As an alternative, we present a neural sequence-to-sequence approach to g2p which is trained on spelling--pronunciation pairs in hundreds of languages. The system shares a single encoder and decoder across all languages, allowing it to utilize the intrinsic similarities between different writing systems. We show an 11 improvement in phoneme error rate over an approach based on adapting high-resource monolingual g2p models to low-resource languages. Our model is also much more compact relative to previous approaches.
READ FULL TEXT