Masquerade: Simple and Lightweight Transaction Reordering Mitigation in Blockchains
Blockchains offer strong security gurarantees, but cannot protect users against the ordering of transactions. Players such as miners, bots and validators can reorder various transactions and reap significant profits, called the Maximal Extractable Value (MEV). In this paper, we propose an MEV aware protocol design called Masquerade, and show that it will increase user satisfaction and confidence in the system. We propose a strict per-transaction level of ordering to ensure that a transaction is committed either way even if it is revealed. In this protocol, we introduce the notion of a "token" to mitigate the actions taken by an adversary in an attack scenario. Such tokens can be purchased voluntarily by users, who can then choose to include the token numbers in their transactions. If the users include the token in their transactions, then our protocol requires the block-builder to order the transactions strictly according to token numbers. We show through extensive simulations that this reduces the probability that the adversaries can benefit from MEV transactions as compared to existing current practices.
READ FULL TEXT