MASON: A Model AgnoStic ObjectNess Framework

09/20/2018
by   K J Joseph, et al.
6

This paper proposes a simple, yet very effective method to localize dominant foreground objects in an image, to pixel-level precision. The proposed method 'MASON' (Model-AgnoStic ObjectNess) uses a deep convolutional network to generate category-independent and model-agnostic heat maps for any image. The network is not explicitly trained for the task, and hence, can be used off-the-shelf in tandem with any other network or task. We show that this framework scales to a wide variety of images, and illustrate the effectiveness of MASON in three varied application contexts.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset