Masked Label Prediction: Unified Massage Passing Model for Semi-Supervised Classification
Graph convolutional network (GCN) and label propagation algorithms (LPA) are both message passing algorithms, which have achieved superior performance in semi-supervised classification. But GCN performs feature propagation by a neural network to make predictions, while LPA uses label propagation across graph adjacency matrix to get results. However, there is still no good way to combine these two kinds of algorithms. In this paper, we proposed a new Unified Massage Passaging model (UniMP) that can incorporate feature propagation and label propagation with a shared message passing network, providing a better performance in semi-supervised classification. First, we adopt a graph Transformer network jointly label embedding to propagate both the feature and label information. Second, to train UniMP without overfitting in self-loop label information, we propose a masked label prediction method, in which some per-entage of training examples are simply masked at random, and then predicted. UniMP conceptually unifies feature propagation and label propagation and be empirically powerful. It obtains new state-of-the-art semi-supervised classification results in Open Graph Benchmark (OGB). Our implementation is available online https://github.com/PaddlePaddle/PGL/tree/main/ ogb_examples/nodeproppred/unimp.
READ FULL TEXT